
NIST HL7 Web Service Overview and Installation 
 
 
 
NIST is developing a framework to test HL7 applications based on the concept of conformance 
profiles. The framework contains a core set of services that include message generation, 
message validation, profile validation, encoding transformations, and a test system. The 
package is written in Java and can be delivered as a set of Java APIs, applications built on top 
of the APIs, or web services. In this document we describe the message generation and 
message validation services and how they are deployed as web services. Below is an overview 
of the process with respect to the server and client side setup and web service installation: 
 
Server Side: 

1. Have available the set of services you wish to expose (e.g., message validation, etc). 
2. Write a Java interface tailored to web services to expose a set of desired operations 

(e.g., MessageValidation.java) 
3. Create a WSDL file for these services using Java2WSDL (e.g., Java2WSDL 

MessageValidation.class). The WSDL file describes the web service in a platform and 
programming neutral fashion. 

4. Generate the service files using WSDL2Java and the WSDL file that was created in step 
3 (e.g., WSDL2Java MessageValidation.wsdl). Among other resources this provides the 
Java skeleton source code files of the services. 

5. Using the prewritten core set of APIs implement the skeleton files created by the 
WSDL2Java tool. 

6. Using Apache Ant create the aar file (The aar is an archive file that contains all the 
artifacts required by the service). 

7.  Placed the aar file and other resources in the Axis2 service folder for deployment 
(Note: The steps above have been completed by NIST; for users wishing to deploy the 
services locally step 7 is all that is needed—see step 5 of Installation). 

 
Client Side: 

1. Using a WSDL tool on the client for the appropriate platform (e.g., wsdl on .net) create 
the client side interface code (e.g., C# interface) 

2. Write applications using the interface code created in the previous step. 
 
Installation: 

1. Install Apache Tomcat 
2. Install Apache Axis2 
3. Install Apache Ant 
4. Install an Axis 2 service on Tomcat 
5. Add resource files needed by the web service (e.g., aar files, libraries, etc). 



 2 

Modifications 
 
Name Issue Modifications Date 
Roch Bertucat 0.8 Axis 2 version 1.2 update 06.18.2007 
Roch Bertucat 0.7 Files dependencies update 01.19.2007 
Roch Bertucat 0.6 Add information paragraph 2.4 10.13.2006 
Robert Snelick 0.5 Overview text and general editing 10.11.2006 
Roch Bertucat 0.4 Methods description + link to javadoc 10.6.2006 
Roch Bertucat 0.3 Session Management & C# client configuration 10.4.2006 
Len Gebase 0.2 Review and completions 9.24.2006 
Roch Bertucat 0.1 Server and client configuration 9.6.2006 

 
Table of Contents 
 
1 Definitions............................................................................................................................ 3 
2 Installation............................................................................................................................ 4 

2.1 Apache Tomcat ............................................................................................................ 4 
2.2 Apache Axis2............................................................................................................... 4 
2.3 Apache Ant .................................................................................................................. 4 
2.4 Installing the service from an .aar file ......................................................................... 4 

2.4.1 Copy the .aar file.................................................................................................. 4 
2.4.2 Copy NIST libraries and resources ...................................................................... 4 

3 Building a service with Apache Axis2................................................................................. 5 
3.1 Generating a WSDL file .............................................................................................. 5 
3.2 Generating the Service Files from the WSDL file....................................................... 8 

3.2.1 Implementing the Skeleton file............................................................................ 8 
3.2.2 Modifying the Axis2 Session Management....................................................... 10 
3.2.3 Configuring the Build File ................................................................................. 12 
3.2.4 Building the core.jar........................................................................................... 12 
3.2.5 Executing the Build File .................................................................................... 13 
3.2.6 Debugging with Axis2 and Tomcat ................................................................... 13 

4 Connecting Clients to an Axis2 Service ............................................................................ 14 
4.1 Overview and Available Methods ............................................................................. 14 

4.1.1 Message Validation............................................................................................ 14 
4.1.2 Profile Validation............................................................................................... 14 

4.2 Java Client.................................................................................................................. 15 
4.3 C# Client .................................................................................................................... 15 

4.3.1 Generalities ........................................................................................................ 15 
4.3.2 How to solve some .NET interoperability issues with Tomcat?........................ 16 

Code generated from the Microsoft .NET’s “wsdl” tool ............................................... 16 
Session Management ..................................................................................................... 16 

4.4 Other Clients .............................................................................................................. 17 
5 References.......................................................................................................................... 18 
 



 3 

1 Definitions 
 
Web Service 

The W3C defines a Web service as a software system designed to support interoperable 
machine-to-machine interaction over a network. 
 
Because this definition encompasses many different systems, in common usage the term 
usually refers to those services that use SOAP-formatted XML envelopes and have their 
interfaces described by WSDL.  
 

 
 
 
SOAP  

An XML-based, extensible message envelope format, with "bindings" to underlying 
protocols (e.g., HTTP, SMTP and XMPP). 
 
WSDL 

An XML format that allows service interfaces to be described, along with the details of 
their bindings to specific protocols. Typically used to generate server and client code, and for 
configuration. 
 
UDDI 

A protocol for publishing and discovering metadata about Web services, to enable 
applications to find Web services, either at design time or runtime. 



 4 

2 Installation 
We use Java version 1.5. 

2.1 Apache Tomcat 
First, a web server has to be installed. We use apache tomcat. It can be downloaded at: 

http://tomcat.apache.org/. 
Version used: 5.5.17 

2.2 Apache Axis2 
Next, for supporting SOAP services, axis2 must be installed from: 

http://ws.apache.org/axis2/. For details on how to write a web service, refer to the axis2 user 
guide, available at: http://ws.apache.org/axis2/1_0/userguide.html. 
Version used: 1.2 
 

You should be able to install and configure properly Axis2 before continuing. You should 
also know the different ways to implement and deploy a simple service (especially how to 
deploy a service with the archive file .aar).  

2.3 Apache Ant 
http://ant.apache.org/ 
You should know how to execute and modify a build file. 
 

2.4 Installing the service from an .aar file 

2.4.1 Copy the .aar file 
Just drop the .aar file in the directory %CATALINA_HOME%\webapps\axis2\WEB-

INF\services (CATALINA_HOME is the directory in which Tomcat is installed) to deploy the 
service. 

2.4.2 Copy NIST libraries and resources 
Some libraries and resources required to run the NIST core module functionalities have 

to be added on the Axis2 module installed in the Tomcat directory:  
- core.jar, DataSource.jar, DataValidationContext.jar, hsqldb.jar, jsr173_1.0_api.jar, 

MessageValidationContext.jar, ProfileValidationContext.jar, Report.jar, saxon8.jar, 
SequenceNumber.jar, TableValue.jar,ValidationContext.jar, xalan.jar, xbean.jar, 
xbean_xpath.jar, xercesImpl.jar, xml-apis.jar have to be copied in the directory 
%CATALINA_HOME%\webapps\axis2\WEB-INF\lib. 

- Data files (contained in the directory data\) have to be included directly in the directory 
%CATALINA_HOME%\ respecting the original directory structure. 

 
If you don’t have any .aar file, you have to build the service. 
 



 5 

3 Building a service with Apache Axis2  
 

 
 

We use the tools called Java2WSDL and WSDL2Java provided by Axis2. These tools can 
be integrated directly as a plug-in into Eclipse (follow the installation directions on: 
http://ws.apache.org/axis2/tools/1_2/eclipse/wsdl2java-plugin.html). 

 
Eclipse is a Java Integrated Development Environment. If you are not an Eclipse user, you 

can use Java2WSDL and WSDL2Java directly using the command line (see 3.1 and 3.2). 
 

3.1 Generating a WSDL file 
 

 
 
We want to generate the WSDL file for the MessageValidation.java interface shown 

below (note that the WSDL file is only a standard representation of the data types used, so the 
implementation of the methods doesn’t matter for now). We’ll use Java2WSDL to generate the 
file. 
 
/* 
 * NIST HL7 Web Service 
 * MessageValidation.java Aug 29, 2006 
 * 
 * This code was produced by the National Institute of Standards and 
 * Technology (NIST). See the "nist.disclaimer" file given in the 
distribution  



 6 

 * for information on the use and redistribution of this software. 
 */ 
 
/** 
 *  
 */ 
package gov.nist.hl7.ws.validation; 
 
/** 
 * This interface provides a simple interface for validating a message 
against a profile. 
 * This interface is intended for use in a web-service environment. 
Parameters and return 
 * values are intentionally made to be simple objects. 
 * <p> 
 * Currently only basic validation functionality is provided. The 
capibability for 
 * advanced validation services is planned. For example, the user will be 
able to set the 
 * context in which the message is validated. This functionality already 
exists but will 
 * need to be exposed in this interface. 
 *  
 * @author Robert Snelick (NIST) 
 * 
 */ 
public interface MessageValidation { 
 
    /** 
     * Set the Profile 
     * @param xmlProfile a Profile encoded as an XML String 
     * @param profileId an id to identify the Profile (value used in the 
report) 
     * @return true if the Profile has been set 
     */ 
    public boolean setProfile(String xmlProfile, String profileId); 
  
 /** 
  * Set the Message 
  * @param message a Message encoded as an XML String. The message 
can be an 
  * XML or ER7 String. An ER7 message will be converted into its XML 
representation for 
  * processing. 
     * @param isXML Set to true if the <code>String</code> is an XML 
representation of the 
     * message; false if the <code>String</code> is an ER7 representation 
of the message. 
  * @return true if the message was successfully read and processed; 
false otherwise. 
  */ 
 public boolean setMessage(String message, boolean isXML); 
  
    /** 
     * Set the MessageValidationContext 
     * @param xmlMessageValidationContext a MessageValidationContext 
encoded as an XML String 



 7 

     * @return true if the MessageValidationContext has been set 
     */ 
    public boolean setMessageValidationContext(String 
xmlMessageValidationContext); 
     
 /** 
  * Validate the message against a profile. The return value is true 
if the message is  
  * valid with respect to the profile and the validation context. The 
validation context 
  * describes the validation tests that are performed. The return 
value of false is returned if 
  * the validation fails or if the profile or message is not set 
correctly. 
  * <p> 
  * @return true if the message is valid with respect to the profile 
and the validation 
  * context; return false otherwise. 
  */ 
 public boolean validate(); 
  
    /** 
     * Get the MessageValidationReport associated with the previous 
validation 
     * @return a String object that contains an XML report of the message 
validation results 
     */ 
    public String getMessageValidationReport(); 
     
    /** 
     * Get the messsage of the last exception caught 
     * @return a String containing the last exception message 
     */ 
    public String getLastExceptionMessage(); 
} 

 
To generate the WSDL file, we need the file named MessageValidation.java.  The file 

has to be placed in the directory gov\nist\hl7\ws\validation (on unix platforms replace \ with /) 
under your Java class path directory. The file must then be compiled. 

 
After the MessageValidation.java file has been compiled, the Java2WSDL tool is run on 

the class file (Java2WSDL MessageValidation.class creates MessageValidation.wsdl). With 
Eclipse, the WSDL plug-in can be found by selecting File->New->Other (further details can be 
found by following the link above for installing the plug-ins). 

 
For non Eclipse users, you can use the script files java2wsdl.bat or java2wsdl.sh. These 

files are located in the bin\ directory under the directory where Axis2 was installed. To run 
either script the environment variables AXIS2_HOME and JAVA_HOME must be set 
correctly. The shell script can be run from the Axis2 bin directory as provided, but to run it 
elsewhere the variables must be set. An example invocation of the scripts, along with a 
description of the script options, is provided in the Axis2 user guide referenced above. 
 



 8 

3.2 Generating the Service Files from the WSDL file 
 

When the WSDL file is generated, we extract the service files with the tool WSDL2Java.  
 
This can be done through Eclipse or with the script files wsdl2java.bat or wsdl2java.sh 

(See 3.1).  
 
Invoking the script as shown in the example with our WSDL file replacing the one in the 

example, results in the creation of a number of files. The files contain configuration 
information, a build file and Java classes to access the web service, create client and server side 
adapter code, and additional resources. 

 
The Java source files that are generated will have to be moved before they will compile.  

The package name at the top of the files should be used to determine the correct location for 
the files. The build file and the resources directory should be moved above the root of the 
source code directory. The exact location is determined by the value of the property named 
“src” in the build file. 

 
 

 
 

 
The Java class files allow the user to configure, describe the service and access it 
synchronously or asynchronously. We describe the service in a file called skeleton. 
 

3.2.1 Implementing the Skeleton file 
The tool WSDL2Java generates several files. One of them is called the skeleton and 

implements the service executed on the server side. 

/** 
 * MessageValidationSkeleton.java This file was auto-generated from WSDL   
by the Apache Axis2 version: 1.0 May 04, 2006 (09:21:04 IST) 
 */ 
package gov.nist.hl7.testframework.testws.messagevalidation; 
 
/** 
 * MessageValidationSkeleton java skeleton for the axisService 
 */ 
public class MessageValidationSkeleton 
    implements MessageValidationSkeletonInterface { 
    /** 



 9 

 
The MessageValidationSkeleton.java file shown above should have been generated 

under the src directory when WSDL2Java was run, and it should have been moved to the 
appropriate directory. The user has to explicitly move all the files (created by WSDL2Java) to 

     * @param param8 
     */ 
    public 
gov.nist.hl7.testframework.testws.messagevalidation.types.SetMessageRespon
se setMessage( 
        
gov.nist.hl7.testframework.testws.messagevalidation.types.SetMessage 
param8) { 
        //Todo fill this with the necessary business logic 
        throw new java.lang.UnsupportedOperationException(); 
    } 
 
    /** 
     * @param param10 
     */ 
    public 
gov.nist.hl7.testframework.testws.messagevalidation.types.ValidateResponse 
validate( 
        gov.nist.hl7.testframework.testws.messagevalidation.types.Validate 
param10) { 
        //Todo fill this with the necessary business logic 
        throw new java.lang.UnsupportedOperationException(); 
    } 
 
    /** 
     * @param param12 
     */ 
    public 
gov.nist.hl7.testframework.testws.messagevalidation.types.GetValidationRep
ortResponse getValidationReport( 
        
gov.nist.hl7.testframework.testws.messagevalidation.types.GetValidationRep
ort param12) { 
        //Todo fill this with the necessary business logic 
        throw new java.lang.UnsupportedOperationException(); 
    } 
 
    /** 
     * @param param14 
     */ 
    public 
gov.nist.hl7.testframework.testws.messagevalidation.types.SetProfileRespon
se setProfile( 
        
gov.nist.hl7.testframework.testws.messagevalidation.types.SetProfile 
param14) { 
        //Todo fill this with the necessary business logic 
        throw new java.lang.UnsupportedOperationException(); 
    } 
} 



 10 

the directory with the same package named indicated in the web service interface file 
(MessageValidation.java; in this case the directory is gov\nist\hl7\ws\validation). 

 

3.2.2 Modifying the Axis2 Session Management 
 
Axis2 uses "services.xml" to hold the configurations for a particular web service 

deployed in the Axis2 engine. This file is generated by the WSDL2Java tool and placed in the 
directory resources.   

 
By design, Web services are said to be stateless. This means that local class attributes set 

when a web service is called are not persistent, i.e., if a subsequent call is made, values set in 
the previous call are lost. Even though web services are stateless, to support some applications, 
maintaining some state information is necessary. To address this problem, Axis2 supports 
session management. With this approach local variables still cannot be used to maintain state, 
but the global state of the service can be maintained.  

 
Listed below are the different levels of session that provides Axis2: 
 

1. Request 
This is the default type of session by Axis2. The lifetime of this session is limited to the 

method invocation's lifetime, or the request processing time. 
 

2. SOAPSession 
Managing a SOAP session requires both the client and service to be aware of the 

sessions; in other words, the client has to send the session-related data if he wants to access the 
same session and the service has to validate the user by using session-related data. So both 
clients and server have to configure the SOAP message to add the session information.  

 
This scope allows the data on the server side to be persistent. 

 
3. Transport 

In the case of a Transport session, Axis2 uses transport-related session management 
techniques to manage session. As an example, in the case of HTTP, it uses HTTP cookies to 
manage the session. The lifetime of the session is controlled by the transport, not by Axis2. 

 
This scope allows the data on the server side to be persistent. This type seems to be the 

one we need either to manage the users or to be interoperable with other environment (only a 
cookie to manage). 
 

4. Application 
Application scope has the longest lifetime compared to others; the lifetime of the 

application session is equal to the lifetime of the system. If you deploy a service in application 
scope, there will be only one instance of that service. 
 
The next figures below show the different scope from the client side. 



 11 

 

 
 
To change the scope of the service, modify the service.xml file. Setting the scope of the 

service element as shown below allows the same service to be provided to all users when more 
than one user simultaneously accesses the service. 

 



 12 

<!-- This file was auto-generated from WSDL --> 
<!-- by the Apache Axis2 version: #axisVersion# #today# --> 
<serviceGroup> 
<service name="MessageValidation" scope="transportsession"> 
... 
</service> 
</serviceGroup> 

 

3.2.3 Configuring the Build File 
The default build file generated by WSDL2Java has to be changed to include source files 

and libraries used in the core package. This can be done by copying the following XML 
elements and pasting them in the build file. 
 
<property name="hl7.base.dir" value="./.. "/> 
<property name="project.base.dir" value="."/> 
<property name="maven.class.path" value=""/> 
<property name="name" value="MessageValidation"/> 
<property name="src" value="${project.base.dir}/src"/> 
<property name="test" 
value="${project.base.dir}/test"/> 
<property name="build" 
value="${project.base.dir}/build"/> 
<property name="classes" value="${build}/classes"/> 
<property name="lib" value="${build}/lib"/> 
<property name="lib2" value="${hl7.base.dir}/lib"/> 

… 
<path id="axis2.class.path"> 
<pathelement path="${java.class.path}"/> 
<pathelement path="${maven.class.path}"/> 
<fileset dir="${axis2.home}"> 
<include name="lib/*.jar"/> 
</fileset> 
<fileset dir="${lib2}"> 
<include name="*.jar"/> 
</fileset> 
</path> 

… 
<javac debug="on" destdir="${classes}"> 
<src path="${src}"/> 
<classpath refid="axis2.class.path"/> 
</javac> 

… 
 

3.2.4 Building the core.jar 
The file core.jar has to be built and added to the class path of the working project. With 

ant, we execute the build file with the option jar on the directory \hl7\core. The core jar is 
created into the folder jar/. 
 

hl7.base.dir is the 
root directory of 
the package. 

lib2 is the path to 
the libraries. 

The included path 
has to include the 
core libraries. 



 13 

3.2.5 Executing the Build File 
With ant, we execute the build file. Invoking ant without any arguments in the 

directory where the build file is located results in ant executing the default target. This 
produces several output files in the directory build/. 

 
The aar file contained in the folder build/lib is the one describing the service. This file 

has to be copied in the directory %CATALINA_HOME%\webapps\axis2\WEB-INF\services. 
 
You can now deploy the service file (see 2.4). 
 

3.2.6 Debugging with Axis2 and Tomcat 
You can use two very useful tools to debug your service with Tomcat, Eclipse and Axis2. 
 
A tool called SOAP Monitor provides a way for service developers to monitor the SOAP 

messages being used to invoke Web services along with the results of those messages. This 
tool is provided by Axis2.  

 
Tomcat can be configured in debug mode. If you configure Eclipse properly, you can 

debug your running service directly with the very powerful debug interface provided by 
Eclipse. 

 



 14 

4 Connecting Clients to an Axis2 Service 

4.1 Overview and Available Methods 
 

 
 

Currently the NIST web service exposes Message Validation and Profile Validation 
functionality. The features for these services are scaled down in the current version. The 
interface for these services use simple data types (e.g., String) and we avoid complex 
operations. Multiple calls are required to perform a desired action. These simplifications are 
intentional to make testing and deployment easier. Additional functionality can be added later. 
For complete details of the services currently offered, see the javadoc. 

 

4.1.1 Message Validation 
Available operations 

• setMessageValidationContext 
• getLastExceptionMessage 
• setMessage 
• getMessageValidationReport 
• validate 
• setProfile 

 

4.1.2 Profile Validation 
Available operations 

• getLastExceptionMessage 
• validate 
• setProfileValidationContext 
• setProfile 



 15 

• getProfileValidationReport 
 

4.2 Java Client 
From a WSDL file, we can produce the files required to access the service. For example, 

the tool WSDL2Java generates java files that can be added directly to an existing project. 

4.3 C# Client 

4.3.1 Generalities 
From a WSDL file, we can produce the files required to access the service. The tool 

‘wsdl’ provided by Microsoft .NET generates C#, C++ or VB files that can be added directly to 
an existing project. 
 

Here is an extract of the C# file produced by the tool. This file can be used to access our 
service. 
 
//-----------------------------------------------------------------------------
- 
// <autogenerated> 
//     This code was generated by a tool. 
//     Runtime Version: 1.1.4322.2032 
// 
//     Changes to this file may cause incorrect behavior and will be lost if  
//     the code is regenerated. 
// </autogenerated> 
//-----------------------------------------------------------------------------
- 
 
//  
// This source code was auto-generated by wsdl, Version=1.1.4322.2032. 
//  
using System.Diagnostics; 
using System.Xml.Serialization; 
using System; 
using System.Web.Services.Protocols; 
using System.ComponentModel; 
using System.Web.Services; 
 
 
/// <remarks/> 
[System.Diagnostics.DebuggerStepThroughAttribute()] 
[System.ComponentModel.DesignerCategoryAttribute("code")] 
[System.Web.Services.WebServiceBindingAttribute(Name="MessageValidationSOAP11Bi
nding", 
Namespace="http://MessageValidation.testws.testframework.hl7.nist.gov")] 
public class MessageValidation : 
System.Web.Services.Protocols.SoapHttpClientProtocol { 
     
    /// <remarks/> 
    public MessageValidation() { 
        this.Url = "http://127.0.0.1:8080/axis2/services/MessageValidation"; 



 16 

    } 
     
    /// <remarks/> 
    
[System.Web.Services.Protocols.SoapDocumentMethodAttribute("urn:setMessage", 
Use=System.Web.Services.Description.SoapBindingUse.Literal, 
ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Bare)] 
    [return: System.Xml.Serialization.XmlElementAttribute("setMessageResponse", 
Namespace="http://MessageValidation.testws.testframework.hl7.nist.gov/types")] 
    public setMessageResponse 
setMessage([System.Xml.Serialization.XmlElementAttribute("setMessage", 
Namespace="")] setMessage setMessage1) { 
        object[] results = this.Invoke("setMessage", new object[] { 
                    setMessage1}); 
        return ((setMessageResponse)(results[0])); 
    } 
 
...   
     
} 
 

4.3.2 How to solve some .NET interoperability issues with Tomcat? 

Code generated from the Microsoft .NET’s “wsdl” tool 
By default, the wsdl tool will generate some C# file used to connect to the remote server. 

It appears that Apache Axis2 won’t handle some “Namespace” attributes that .NET provides in 
its SOAP message requests.  

 
The solution is to remove the namespaces in the parameters declarations 

(System.Xml.Serialization.XmlElementAttribute). 

Session Management 
As described above in the document, we use the transport session to manage the users 

accessing our service. The .NET client has to be aware that it needs to collect a cookie and 
send it back to the service. 

A simple modification can be done when we declare the instance of the connector with 
the service. 

/// <summary> 
/// Class constructor. 
/// </summary> 
/// <param name="validationWebServiceUrl">NIST URL</param> 
public NistWebServiceClient(System.String validationWebServiceUrl) 
{ 
 _hl7MessageValidation = new 
Dvtk.IheActors.Hl7.WebService.Validation.MessageValidation(validationWebServiceUrl); 
 _hl7MessageGeneration = new 
Dvtk.IheActors.Hl7.WebService.Generation.MessageGeneration(validationWebServiceUrl); 
    
 _hl7MessageValidation.CookieContainer = new CookieContainer(); 
 _hl7MessageGeneration.CookieContainer = new CookieContainer(); 
} 



 17 

  

4.4 Other Clients 
Theoretically, from any WSDL file, a user can generate access files in any language. 



 18 

5 References 
 
http://tomcat.apache.org/ 
 
http://ws.apache.org/axis2/ 
 
http://ant.apache.org/ 
 
http://www.w3.org/2002/ws/ 
 
http://en.wikipedia.org/wiki/Web_service 
 
http://ws.apache.org/axis2/tools/1_2/eclipse/wsdl2java-plugin.html 
Eclipse plugging JAVA2WSDL and WSDL2JAVA 
 
http://www.developer.com/java/web/article.php/3620661 
Axis2 Session Management 
 
http://wso2.org/library/225 
Tomcat setup for debugging & Eclipse configuration for debugging an axis2 webservice 
 
http://ws.apache.org/axis2/1_2/soapmonitor-module.html 
SoapMonitor configuration 
 
http://msdn2.microsoft.com/en-us/library/7h3ystb6(VS.71).aspx 
Microsoft .NET’s WSDL tool 


